
Lecture Notes SWiM@Wes 2025

A Crash Course in Cryptology
Securing Electronic Communications

Instructor Information

Name: Zachary Porat

Email: zporat@wesleyan.edu

Office: ESC 604

Wesleyan University, Middletown, CT

Department of Mathematics and Computer Science

mailto:zporat@wesleyan.edu

Preface

These lecture notes were originally developed for a mini-course that I gave as a part of

SWiM@Wes 2025. One goal of SWiM is to provide mentorship to interested undergraduate

students who are considering pursuing graduate studies in mathematics by introducing

the workshop-style conference. In many ways, these notes serve as an homage to three of

my own undergraduate mentors: Jeffrey Hatley, Kathryn Lesh, and George Todd.

Jeff encouraged me to attend my first math conference. The experience was incredible,

giving me insight into what it is like to travel for academic conferences (a topic too often

omitted from discussion about academic life). Jeff graciously invited me to tag along to

dinner with several other attendees, so that I could experience what being a mathematician

outside of the classroom was like. That conference really sold me on pursuing a PhD. I

am forever grateful for his (ongoing) support.

Kathryn played a central role in forging my pedagogical approach. She saw promise in

me after my first year of college–which was admittedly very rough–and asked if I wanted

to be a course assistant in the math department. I agreed, and ended up working with

Kathryn frequently. I grew so much as an instructor from seeing how she set up her

courses, prepared lesson plans, and managed the classroom. Without her guidance, I

would not have learned many of the intricacies required to be a successful educator.

George taught me the majority of the math that is contained in these notes. He

introduced many of these concepts to me in a course on mathematical cryptology at Union

College (a course that was pioneered by Kathryn). George’s energy and enthusiasm for

the subject helped inspire me to pursue number theory. He also introduced me to math

research. His guidance allowed me to learn how research differed from coursework,

while simultaneously fostering novel ideas, which eventually turned into my first ever

math publication (in collaboration with George and a few others)!

I would also like to thank Lydia Ahlstrom and Arianna Zikos for organizing the

conference with me, and Jacob Tolman and Stefan Hesseling for serving as my project

assistants.

Wesleyan University Zachary Porat

Middletown, CT March 2025

https://mathcs-graduate.wescreates.wesleyan.edu/ams/swim-2025/

Contents

1 Big Picture of Cryptology 1
1.1 Introduction . 1

1.2 Historical Ciphers . 2

1.3 Symmetric Key vs. Public Key Cryptosystems 4

2 Public Key Cryptosystems 5
2.1 Divisibility and Modular Arithmetic . 6

2.2 Multiplicative Order . 7

2.3 Primitive Roots . 8

2.4 Discrete Log Problem . 11

2.5 Diffie-Hellman Key Exchange . 12

3 Cryptoanalysis 14
3.1 Logarithms and Modular Arithmetic . 15

3.2 Baby-Step Giant-Step . 16

4 Exercises 19

§ 1.1 Introduction 1

1 Big Picture of Cryptology

1.1 Introduction

Alice and Bob want to communicate on an insecure channel, but a nefarious actor named

Eve is watching or listening. So, instead of sending plaintext, i.e. data that can be read and

understood, Alice decides to encrypt (or encipher) her message. This process results in

ciphertext, i.e. content that requires work to understand and is otherwise unintelligible,

which she can then send to Bob. Once Bob receives the ciphertext, he goes through the

process of decrypting (or deciphering) the message in order to understand the original

plaintext.

Several terms in this subject area sound similar and are often used interchangeably,

despite having different definitions. The overarching term for the study of confidential

transmissions over insecure channels is cryptology. Then, within the topic of cryptology

are cryptography and cryptoanalysis. Cryptography is the study of keeping messages

secure and cryptoanalysis is the process of trying to recover plaintext from ciphertext.

Let 𝑚 denote a plaintext message, 𝑓 the function used to encipher the message, and

𝑓 (𝑚) = 𝑐 the resulting ciphertext. We can place the above definitions into a mathematical

schematic as follows:

Eve

Alice Bob

Insecure Channel

𝑐

𝑚 𝑓 (𝑚) = 𝑐 𝑐 𝑓 −1(𝑐) = 𝑓 −1

(
𝑓 (𝑚)

)
= 𝑚

plaintext ciphertext ciphertext plaintext

encrypt (encipher)

decrypt (decipher)

§ 1.2 Historical Ciphers 2

Instead of sending her plaintext message 𝑚 over the insecure channel, Alice first

encrypts her message by applying 𝑓 to create ciphertext 𝑓 (𝑚) = 𝑐. Alice then sends

𝑐 over the insecure channel. If Eve intercepts the message, she will have to perform

cryptoanalysis on 𝑐 to try to recover 𝑚. However, Eve has no knowledge of what the

function 𝑓 is, which makes analysis difficult. Bob, on the other hand, does know what 𝑓

is. Therefore, he can simply apply 𝑓 −1
to 𝑐 = 𝑓 (𝑚) to recover the original message from

Alice. The pair of algorithms needed for encryption and decryption is called a cipher.

1.2 Historical Ciphers

Example 1.1. One type of function used to encipher plaintext is called a shift (Caesar)
cipher. Let 𝑚 = MATH. Further, convert the alphabet to numbers as follows:

A ↦−→ 0

B ↦−→ 1

...

Z ↦−→ 25

Translate𝑚 into the ordered 4-tuple (12, 0, 19, 7). Define 𝑓 by taking an ordered 𝑛-tuple

and adding 3 to each entry. So, Alice takes 𝑚 and encodes it as

𝑐 = 𝑓 (𝑚) = (12 + 3, 0 + 3, 19 + 3, 7 + 3) = (15, 3, 22, 10) = PDWK.

Alice sends 𝑐 to Bob. To decipher, Bob first converts 𝑐 into a 4-tuple of numbers, then

computes 𝑓 −1(𝑐) to recover 𝑚 as follows:

𝑚 = 𝑓 −1(𝑐) = (15 − 3, 3 − 3, 22 − 3, 10 − 3) = (12, 0, 19, 7).

Finally, Bob converts the 4-tuple of numbers he calculated back into letters to recover

the intended message.
1

Remark 1.2. While this cipher is straightforward to apply, it has a few drawbacks. First,

𝑓 enciphers every letter using the same operation–addition by three–making it very

easy to attack. Eve simply needs to check all 26 shifts, until one makes sense! Second,

1
For those with a background in group theory, you will recognize that in order for this process to work with

all letters, we actually must work in the group Z/26Z under addition.

§ 1.2 Historical Ciphers 3

Alice and Bob must agree on 𝑓 before communicating. Note that this was a problem

even in our schematic!

One way to attempt to remedy the first problem with the shift cipher is to increase the

complexity of our encryption algorithm. Consider the following algorithm based off the

work of [Hil29].

Example 1.3. Let 𝑚 = (𝑚1, . . . , 𝑚𝑛). Consider an invertible 𝑛 × 𝑛 matrix 𝑘. Encrypt by

computing

𝑐 = 𝑓 (𝑚) = 𝑚𝑘.

Then, to decrypt,

𝑓 −1(𝑐) = 𝑐𝑘−1 = 𝑚𝑘𝑘−1 = 𝑚𝐼𝑛 = 𝑚,

where 𝐼𝑛 denotes the identity 𝑛 × 𝑛 matrix.

Question 1.4. To illustrate that the algorithm described in Example 1.3 does actually

increase security, consider the ciphertext 𝑐 = (5, 10, 1, 16). Assume that 𝑘 is a 4 × 4

matrix with entries in the integers. We leave it to the reader to determine the original

message 𝑚. (See Exercise [Q1.1] for the solution.)

The reason we can be so blasé about the ciphertext and the algorithm used to encrypt

is because the security of the message should not (and does not) rely on either. We have

to assume that Eve has access to both of these pieces of data. Therefore, the security of

the message must rely exclusively on the strength of the key used for encryption and

decryption. In Example 1.1, the key is the value by which the letters are shifted, and in

Example 1.3, the key is the matrix 𝑘. This idea was first stated all the way back in 1883 by

Dutch-born cryptographer Auguste Kerckhoffs.

Kerckhoffs’s Principle ([Ker83]). The security of a cryptosystem must not depend on

the secrecy of the algorithm, but should rest entirely on the strength of the keys.

For example, during the Second World War, Nazi Germany used the Enigma machine

to encrypt communication. The machine used a predefined algorithm for encryption, but

the keys were changed daily. As depicted in the movie The Imitation Game, the allies had

their own Enigma machine, but they could not decode communications because the keys

changed too frequently to be broken.

In the end, the allies did break Enigma by knowing a portion of the original message

and the corresponding portion of ciphertext. Exercise [Q1.1] explores how knowing both

§ 1.3 Symmetric Key vs. Public Key Cryptosystems 4

𝑚 and 𝑐 in combination can lead to deciphering 𝑘, in the context of Example 1.3. We note

that all three examples of cryptosystems thus far share the same problem: Alice and Bob

(or the Nazi regime) must agree on a key before any ciphertext is sent. This poses a serious

dilemma.

Definition 1.5. Alice and Bob must share a key to communicate securely. However,

they cannot exchange a key without a secure channel. This is called the key-sharing
problem.

1.3 Symmetric Key vs. Public Key Cryptosystems

In order to get around the key-sharing problem, the idea of public key cryptography was

introduced to the public domain by Ralph Merkle in the mid-1970s. [Mer78] explains how

a key can be agreed upon over insecure channels in such a way that the integrity of the

messages is not compromised.

The main idea is as follows: Alice wants to send something to Bob securely. First, Bob

buys a safe with a lock, to which only he has the key. Bob ships the safe, unlocked, to

Alice. She puts the item in the safe, locks it, and sends it back to Bob. Bob unlocks it with

his key. If Eve steals the safe in transit, she does not have the key to unlock it.

Building on the work of Merkle, Whitfield Diffie and Martin Hellman devised a scheme

for how this idea could be used in practice. Their method, described in [DH76], would

become known as the Diffie-Hellman key exchange. We will discuss the Diffie-Hellman

key exchange in detail in Section 2.5. In 1997, declassified documents revealed that this

method of key-sharing was actually devised in 1970 by GCHQ, a British intelligence

agency. However, the idea was kept secret from the public.

The major advantage of public key cryptography is that the sender (Alice) only needs to

know how to encrypt, not decrypt. Additionally, the encryption and decryption processes

have been split, increasing the security of the system by preventing one process being

derived from the other. In contrast, in the examples of cryptosystems we have seen

thus far, the decryption key could be calculated by knowing the encryption key. For

example, in Example 1.3, one can compute the decryption matrix 𝑘−1
simply by knowing

the encryption matrix 𝑘.

However, public key cryptography also has downsides. The major drawback is that

this system only works in one direction. That is, messages are only secured in one

direction, which means Alice and Bob cannot communicate freely over the channel. In

this way, public key cryptography is fundamentally different from our previous examples.

To emphasize the differences, we make the following definitions:

§ 1.3 Symmetric Key vs. Public Key Cryptosystems 5

Definition 1.6. A symmetric key cryptosystem is one where the decryption process

can be computed from the encryption process in a reasonable amount of time, e.g.

Examples 1.1 and 1.3.

Definition 1.7. A public key cryptosystem (PKC) is one where it is computationally

infeasible to determine the decryption process from the encryption process. This is

also called an assymmetric cryptosystem. Examples include the Diffie-Hellman key

exchange, RSA, and El Gamal.

In practice, symmetric key cryptosystems are quite fast at passing data, while public

key cryptosystems are slow by comparison. However, generating and passing a key

for a symmetric key cryptosystem is complicated because of the key-sharing problem.

Therefore, many protocols use public key cryptosystems to exchange a key for a symmetric

cryptosystem, and then use that system to communicate freely. By doing this, we leverage

the benefits of both systems. The following table illustrates the trade-offs between the two

systems.

Speed Key Management

PKC Slow Easy

Symmetric Fast Hard

2 Public Key Cryptosystems

As discussed at the end of Chapter 1, a primary role of public key cryptosystems is to

pass keys for symmetric cryptosystems. Perhaps the most famous of these cryptosystems

is the Diffie-Hellman key exhange (DHKE). In an effort to keep within the constraints of

the lecture series, these notes will focus on the DHKE and the number theory required to

understand it. However, no collection of notes on cryptology would be complete without

at least a mention of RSA, another widely-used public key cryptosystem.

In Section 2.4, we will learn that the security of the DHKE relies on the difficulty of

the discrete logarithm problem. The security of RSA, on the other hand, is based on the

difficulty of factoring the product of two large primes. The method is named after its

creators: Ronald Rivest, Adi Shamir and Leonard Adleman. The algorithm was initially

described in 1977 and was published in [RSA78]. Similar to Diffie-Hellman, declassified

documents released in 1997 revealed that an equivalent cryptosystem was developed by

§ 2.1 Divisibility and Modular Arithmetic 6

GCHQ in 1973. See Exercises [Q2.1] and [Q2.2] for additional details on RSA. Further

reading can be found in [Was08, Section 6.8] or [HPS14, Chapter 3].

We now return to our main focus of this chapter, the Diffie-Hellman key exchange. We

will begin by building the necessary number theoretic background, before describing the

algorithm itself.

2.1 Divisibility and Modular Arithmetic

Throughout these notes, we will use the following notation:

• the integers are the set Z = {. . . ,−2,−1, 0, 1, 2, . . .};

• the non-negative integers are the set Z≥0 = {0, 1, 2, . . .};

• the positive integers are the set Z+ = {1, 2, 3, . . .}.

Definition 2.1. If 𝑎, 𝑏 ∈ Z with 𝑎 ≠ 0, we say that 𝑎 divides 𝑏, denoted 𝑎 | 𝑏, if there

exists 𝑘 ∈ Z such that 𝑏 = 𝑘𝑎. If 𝑎 | 𝑏, we also say that 𝑏 is a multiple of 𝑎 and 𝑎 is a
divisor of 𝑏.

Remark 2.2. We note that 𝑎 | 𝑏 if and only if
𝑏
𝑎 ∈ Z.

Example 2.3. Observe the following:

• 7 | 28 because 28 = 4 · 7. Here, we produced the necessary 𝑘-value of 4.

• 7 ∤ 15 because 2 · 7 < 15 < 3 · 7.

Definition 2.4. Let 𝑎, 𝑏, 𝑛 ∈ Z with 𝑛 > 0. We say that 𝑎 is congruent to 𝑏 modulo 𝑛,

denoted

𝑎 ≡ 𝑏 (mod 𝑛)

provided 𝑛 | (𝑎 − 𝑏). Equivalently, there exists some 𝑘 ∈ Z such that

𝑎 − 𝑏 = 𝑘𝑛 or 𝑎 = 𝑘𝑛 + 𝑏.

The number 𝑛 is called the modulus of the congruence.

§ 2.2 Multiplicative Order 7

Example 2.5. We have the following congruences modulo 4:

−1 ≡ 3 (mod 4)
26 ≡ 2 (mod 4)
32 ≡ 0 (mod 4).

Remark 2.6. We note that 𝑎 ≡ 0 (mod 𝑛) if and only if 𝑛 | 𝑎.

Definition 2.7. The least non-negative residue of 𝑎 modulo 𝑛 is the smallest non-

negative integer 𝑘 such that 𝑎 ≡ 𝑘 (mod 𝑛). We will abbreviate the least non-negative

residue as LNR.

Example 2.8. We note that 2 is the least non-negative residue of 26 modulo 4. Further,

we note that 3 is the least non-negative residue of −1 because we have to ensure the

value is greater than or equal to zero.

2.2 Multiplicative Order

Let 𝑎, 𝑛 ∈ Z with 𝑛 > 1. Then, the multiplicative order of 𝑎 modulo 𝑛 is the smallest

positive integer 𝑠 such that 𝑎𝑠 ≡ 1 (mod 𝑛). If such an 𝑠 exists, then we write ord𝑛(𝑎) = 𝑠.2

Example 2.9. Let us compute the multiplicative order of 3 modulo 7, i.e. ord7(3). In

order to perform this computation, we calculate:

3
1 ≡ 3 (mod 7)

3
2 ≡ 2 (mod 7)

3
3 ≡ 6 (mod 7)

3
4 ≡ 4 (mod 7)

3
5 ≡ 5 (mod 7)

3
6 ≡ 1 (mod 7)

Thus, the multiplicative order of 3 modulo 7 is 6, i.e. ord7(3) = 6.

2
For those who have taken a course in abstract algebra, you will recognize that ord𝑛(𝑎) is the order of the

element 𝑎 in the multiplicative group (Z/𝑛Z)×.

§ 2.3 Primitive Roots 8

Example 2.10. Let us try to compute ord14(4).

4
1 ≡ 4 (mod 14)

4
2 ≡ 2 (mod 14)

4
3 ≡ 8 (mod 14)

4
4 ≡ 4 (mod 14)

4
5 ≡ 2 (mod 14)

4
6 ≡ 8 (mod 14)

4
7 ≡ 4 (mod 14)

...

This pattern continues and thus, ord14(4) does not exist.

2.3 Primitive Roots

If 𝑝 is a prime and ord𝑝(𝑎) = 𝑝 − 1, then we say that 𝑎 is a primitive root modulo 𝑝. For

example, Example 2.9 tells us that 3 is a primitive root modulo 7, since ord7(3) = 6 = 7− 1.

By Fermat’s Little Theorem, if 𝑝 ∤ 𝑎, then 𝑎𝑝−1 ≡ 1 (mod 𝑝). Therefore, the additional

constraint on a primitive root 𝑎, that ord𝑝(𝑎) = 𝑝 − 1, ensures that 𝑎 has the maximum

possible order.

Theorem 2.11. If gcd(𝑎, 𝑛) = 1, then

ord𝑛(𝑎) | 𝑘 ⇐⇒ 𝑎𝑘 ≡ 1 (mod 𝑛).

Proof. We must prove both directions of this implication.

(⇒) Let ord𝑛(𝑎) | 𝑘. Then, there exists ℓ ∈ Z such that 𝑘 = ℓ · ord𝑛(𝑎). Compute

𝑎𝑘 ≡ 𝑎ℓ ·ord𝑛(𝑎) ≡ (𝑎ord𝑛(𝑎))ℓ ≡ 1
ℓ ≡ 1 (mod 𝑛).

(⇐) Assume 𝑎𝑘 ≡ 1 (mod 𝑛). By the division algorithm, 𝑘 = 𝑞(ord𝑛(𝑎)) + 𝑟 where

0 ≤ 𝑟 < ord𝑛(𝑎). By way of contradiction, assume 𝑟 > 0. Compute

𝑎𝑘 ≡ 𝑎𝑞(ord𝑛(𝑎))+𝑟 (mod 𝑛)
≡ (𝑎ord𝑛(𝑎))𝑞(𝑎𝑟) (mod 𝑛)
≡ (1𝑞)(𝑎𝑟) (mod 𝑛)

§ 2.3 Primitive Roots 9

≡ 𝑎𝑟 (mod 𝑛).

By assumption, 𝑎𝑘 ≡ 1 (mod 𝑛), thus 𝑎𝑟 ≡ 1 (mod 𝑛). However, 𝑟 < ord𝑛(𝑎), which

is a contradiction since by definition, ord𝑛(𝑎) is the smallest such exponent. Thus,

𝑟 = 0 and 𝑘 = 𝑞 · ord𝑛(𝑎), i.e. ord𝑛(𝑎) | 𝑘, as desired. □

Theorem 2.12. If 𝑎 is a primitive root modulo 𝑝 with 0 < 𝑎 < 𝑝, then

𝑎 𝑖 ≡ 𝑎 𝑗 (mod 𝑝) ⇐⇒ 𝑖 ≡ 𝑗 (mod 𝑝 − 1).

Proof. We must prove both directions of this implication.

(⇒) Assume 𝑎 𝑖 ≡ 𝑎 𝑗 (mod 𝑝). By definition, 𝑝 | (𝑎 𝑖 − 𝑎 𝑗). Without loss of generality,

let 𝑖 > 𝑗. Then, 𝑎 𝑖 − 𝑎 𝑗 = 𝑎 𝑗(𝑎 𝑖−𝑗 − 1). Thus, 𝑝 | (𝑎 𝑗(𝑎 𝑖−𝑗 − 1)), and so by Euclid’s

lemma, 𝑝 | 𝑎 𝑗 or 𝑝 | (𝑎 𝑖−𝑗 − 1). Since 0 < 𝑎 < 𝑝, 𝑝 ∤ 𝑎 and further, 𝑝 ∤ 𝑎 𝑗 . Therefore,

𝑝 | (𝑎 𝑖−𝑗 − 1) and so

𝑎 𝑖−𝑗 ≡ 1 (mod 𝑝).

By Theorem 2.11, ord𝑝(𝑎) | (𝑖− 𝑗). Since 𝑎 is a primitive root modulo 𝑝, ord𝑝(𝑎) = 𝑝−1.

Thus, (𝑝 − 1) | (𝑖 − 𝑗), i.e. 𝑖 ≡ 𝑗 (mod 𝑝 − 1).

(⇐) Assume 𝑖 ≡ 𝑗 (mod 𝑝 − 1). So, (𝑝 − 1) | (𝑖 − 𝑗) or 𝑘(𝑝 − 1) = 𝑖 − 𝑗 for some 𝑘 ∈ Z. We

have

𝑎 𝑖−𝑗 = 𝑎𝑘(𝑝−1) = (𝑎𝑝−1)𝑘 ≡ 1
𝑘 ≡ 1 (mod 𝑝)

by Fermat’s Little Theorem. So, 𝑎 𝑖−𝑗 ≡ 1 (mod 𝑝). Multiply both sides by 𝑎 𝑗 , and we

find 𝑎 𝑖 ≡ 𝑎 𝑗 (mod 𝑝), as desired. □

Corollary 2.13. If 𝑝 is a prime and 𝑏 is a primitive root modulo 𝑝, then

(i) {LNR of 𝑏 𝑖 : 1 ≤ 𝑖 ≤ 𝑝 − 1} = {1, . . . , 𝑝 − 1};

(ii) if 𝑦 ∈ {1, . . . , 𝑝 − 1}, then

𝑏𝑥 ≡ 𝑦 (mod 𝑝)

has a solution for some 𝑥 ∈ Z.

Proof. Exercise [Q2.6]. □

§ 2.3 Primitive Roots 10

Theorem 2.14. If 𝑝 is a prime, then 𝑝 has a primitive root.

Proof. See [Raj13, Theorem 61]. □

Example 2.15. Find all primitive roots for 𝑝 = 5. We check 𝑎 ∈ {1, 2, 3, 4}.

𝑎 = 1:

1
1 ≡ 1 (mod 5)

So, ord5(1) = 1 ≠ 5 − 1.

𝑎 = 2:

2
1 ≡ 2 (mod 5)

2
2 ≡ 4 (mod 5)

2
3 ≡ 3 (mod 5)

2
4 ≡ 1 (mod 5)

Thus, ord5(2) = 4 = 5 − 1. Therefore, 2 is a primitive root modulo 5.

𝑎 = 3:

3
1 ≡ 3 (mod 5)

3
2 ≡ 4 (mod 5)

3
3 ≡ 2 (mod 5)

3
4 ≡ 1 (mod 5)

Thus, ord5(3) = 4 = 5 − 1. Therefore, 3 is a primitive root modulo 5.

𝑎 = 4:

4
1 ≡ 4 (mod 5)

4
2 ≡ 1 (mod 5)

So, ord5(4) = 2 ≠ 5 − 1.

In conclusion, 2 and 3 are the primitive roots modulo 5.
3

3
For those who have taken a course in abstract algebra, you will notice that the collection of primitive roots

modulo 𝑛 are the generators of the multiplicative group (Z/𝑛Z)×.

§ 2.4 Discrete Log Problem 11

2.4 Discrete Log Problem

Let 𝑏, 𝑥 ∈ Z and 𝑛 ∈ Z+. Let 𝑦 be the least positive residue of 𝑏𝑥 modulo 𝑛. That is,

𝑏𝑥 ≡ 𝑦 (mod 𝑛), 0 ≤ 𝑦 < 𝑛.

The discrete log problem asks whether 𝑥 can be determined knowing 𝑏, 𝑦, and 𝑛.

The name stems from the following scenario. Consider 𝑏𝑥 = 𝑦 for 𝑥 ∈ R instead of

𝑥 ∈ Z. Then, 𝑥 = log𝑏(𝑦). If 𝑏 and 𝑦 are known, then 𝑥 is easily calculable. For example,

let us solve 10
𝑥 = 102. Then, we know 𝑥 = log(102). Since 10

𝑥
is an increasing function,

we note

10
0 = 1

10
1 = 10

10
2 = 100

10
3 = 1000.

Since 100 < 102 < 1000, we know that 2 < log(102) < 3. We note that log(102) is much

closer to 2 than 3, so we compute

10
2.1 = 125.8893.

Thus, 2 < log(102) < 2.1. Since again log(102) is closer to 2 than 2.1, we compute

10
2.05 = 112.202.

So, 2 < log(102) < 2.05. Since 2.05 is still too big, we compute

10
2.025 = 105.995.

Therefore, 2 < log(102) < 2.025. We can continue in this way to estimate log(102) as

precisely as we would like.

Over R, solving 𝑏𝑥 = 𝑦 is as simple as calculating logarithms. In the discrete case (i.e.

using modular arithmetic), consider solving the same style equation:

10
𝑥 ≡ 102 (mod 115).

Unlike in the real case, 10
𝑥

is not an increasing function modulo 115, as seen from the lack

§ 2.5 Diffie-Hellman Key Exchange 12

of a pattern below.

10
0 ≡ 1 (mod 115) 10

5 ≡ 65 (mod 115)
10

1 ≡ 10 (mod 115) 10
6 ≡ 75 (mod 115)

10
2 ≡ 100 (mod 115) 10

7 ≡ 60 (mod 115)
10

3 ≡ 80 (mod 115) 10
8 ≡ 25 (mod 115)

10
4 ≡ 110 (mod 115) 10

9 ≡ 20 (mod 115)

This is an example of the discrete log problem, and this problem is thought to be hard.

Here, the term “hard” refers to the notion of computational hardness in the computer

science sense. That is, the discrete log problem relies on the computational hardness
assumption, which is the hypothesis that a particular problem cannot be solved efficiently,

i.e. in polynomial time. We will continue to use the term “hard” in this manner.

2.5 Diffie-Hellman Key Exchange

We now describe the Diffie-Hellman key exchange, described initially in [DH76]. In order

to understand a public-key cryptosystem, we need to detail the following four attributes:

1. Key Setup

2. Encryption Algorithm

3. Decryption Algorithm

4. Basis for Security

Idea: Alice and Bob are communicating over an insecure channel and need to agree on a

key for a symmetric cryptosystem.

Description:

1. Alice (or Bob) picks a prime 𝑝 and a primitive root modulo 𝑝, call it 𝑏.

2. Alice chooses an 𝑥 with 1 ≤ 𝑥 < 𝑝. She sends the least positive residue of 𝑏𝑥

modulo 𝑝 to Bob.

3. Bob picks a 𝑦 with 1 ≤ 𝑦 < 𝑝. He sends the least positive residue of 𝑏𝑦 modulo 𝑝

to Alice.

4. Everyone knows 𝑝, 𝑏𝑥 , 𝑏𝑦 , 𝑏. But only Alice knows 𝑥 and only Bob knows 𝑦.

§ 2.5 Diffie-Hellman Key Exchange 13

5. Alice computes (𝑏𝑦)𝑥 ≡ 𝑏𝑥𝑦 (mod 𝑝).

6. Bob computes (𝑏𝑥)𝑦 ≡ 𝑏𝑥𝑦 (mod 𝑝).

7. Since both Alice and Bob know 𝑏𝑥𝑦 , they choose their key to be the least positive

residue of 𝑏𝑥𝑦 modulo 𝑝.

Security: Eve knows 𝑏, 𝑝, 𝑏𝑥 , 𝑏𝑦 . She can break the Diffie-Hellman key exchange if:

Option 1: She can compute discrete logs. That is, if given 𝑏𝑥 ≡ 𝑧 (mod 𝑝), she

can determine 𝑥. Then, she could compute (𝑏𝑦)𝑥 ≡ 𝑘 (mod 𝑝).

Option 2: Given 𝑏𝑥 and 𝑏𝑦 , she can compute 𝑏𝑥𝑦 perhaps without computing

discrete logs. This is called the Diffie-Hellman problem, and thought to be hard.

Remark 2.16. The discrete log problem and the Diffie-Hellman problem are different

problems, and it is not known if they are equivalent.

Example 2.17. Alice chooses 𝑝 = 71 and 𝑏 = 56. (This data is publicly available.)

1. Alices chooses 𝑥 = 22 and computes

𝐴 = 𝑏𝑥 = 56
22 ≡ 29 (mod 71).

She sends 𝐴 = 29 to Bob.

2. Bob chooses 𝑦 = 61 and computes

𝐵 = 𝑏𝑦 = 56
61 ≡ 13 (mod 71).

He sends 𝐵 = 13 to Alice.

3. Alice computes

𝐵𝑥 = (𝑏𝑦)𝑥 = 13
22 ≡ 8 (mod 71).

4. Bob computes

𝐴𝑦 = (𝑏𝑥)𝑦 = 29
61 ≡ 8 (mod 71).

5. Alice and Bob use 𝑘 = 8 as their shared key.

§ 2.5 Diffie-Hellman Key Exchange 14

Strictly speaking, 𝑏 does not have to be a primitive root modulo 𝑝 for the Diffie-Hellman

key exchange to work. However, consider the following. Let 𝑏 ∈ Z, and 𝑝 be prime. If

gcd(𝑏, 𝑝) = 1, then 𝑏𝑝−1 ≡ 1 (mod 𝑝) by Fermat’s Little Theorem. So, ord𝑝(𝑏) ≤ 𝑝 − 1. If

𝑏 is such that ord𝑝(𝑏) < 𝑝 − 1, then {LNR of 𝑏 𝑖 : 1 ≤ 𝑖 < 𝑝} is smaller than {1, . . . , 𝑝 − 1}.

So, there are fewer possibilities for 𝑘. If 𝑏 is a primitive root modulo 𝑝, then the set

{LNR of 𝑏 𝑖 : 1 ≤ 𝑖 < 𝑝} is as large as possible.

Warning: There are some bad choices for 𝑝. If 𝑝 − 1 factors as a product of small

primes, for example, then the Pohlig-Hellman algorithm [PH78] can solve the discrete

log problem very efficiently.

We conclude by noting that the Diffie-Hellman key exchange is still in use today in

some TLS protocols. In practice, the primes chosen as the modulus in the algorithm must

be over 600 digits long to ensure safe communication! While the DHKE is still secure,

the majority of implementations have been replaced by the Elliptic Curve Diffie-Hellman

key exchange (ECDH). The algorithm for ECDH is essentially the same as that for the

DHKE, with the problems now posed in the context of points on elliptic curves, instead

of integers. To learn more, see [HPS14, Section 5.4.1].

3 Cryptoanalysis

The goal of this chapter is to discuss the baby-step giant-step algorithm introduced in

[Sha71]. Developed by Daniel Shanks and published in 1971, the algorithm provides

a more efficient method for solving the discrete log problem and thereby, an effective

strategy for breaking the Diffie-Hellman key exchange.

However, since we brought up RSA at the start of Chapter 2, we would be remiss not

to mention a technique that could be used to attack it, as well. So, before discussing

baby-step giant-step, we make a small digression. Recall, the security of RSA is based

on the difficulty of factoring the product of two large prime numbers. One method for

effective integer factorization was developed by John M. Pollard in 1974 and published in

[Pol74].

The method, called Pollard’s 𝑝 − 1 algorithm, is not useful for all large numbers;

however, it is extremely efficient for certain numbers. We note that the existence of such

an algorithm suggests that, similar to the Diffie-Hellman key exchange, there are also

some bad choices for moduli in RSA. The fact that such an algorithm was published prior

to the introduction of RSA indicates that we must be cognizant of potential attacks when

§ 3.1 Logarithms and Modular Arithmetic 15

preparing a cryptosystem. For an in-depth treatment of Pollard’s 𝑝 − 1 algorithm, see

[HPS14, Section 3.5].

3.1 Logarithms and Modular Arithmetic

Before introducing the baby-step giant-step algorithm, we first need to understand how

logarithms behave with respect to modular arithmetic. We start by making the following

definition.

Definition 3.1. If 𝑝 is a prime, 𝑥, 𝑦 ∈ Z, and 𝑏 is a primitive root modulo 𝑝, then we

write:

𝑥 ≡ log𝑏(𝑦) (mod 𝑝 − 1) ⇐⇒ 𝑏𝑥 ≡ 𝑦 (mod 𝑝).

Remark 3.2. Note that the moduli are different on each side of the implication.

Recall from Theorem 2.12 that

𝑎 𝑖 ≡ 𝑎 𝑗 (mod 𝑝) ⇐⇒ 𝑖 ≡ 𝑗 (mod 𝑝 − 1),

so Definition 3.1 makes sense. Moreover, we notice that the two operations are inverses.

Theorem 3.3 (Properties of Logarithms). Suppose 𝑝 is a prime and 𝑏 is a primitive root

modulo 𝑝, then for 𝑥, 𝑦, 𝑧 ∈ Z with 𝑥, 𝑦, 𝑧 . 0 (mod 𝑝)

(a) log𝑏(𝑏) ≡ 1 (mod 𝑝 − 1) and log𝑏(1) ≡ 0 (mod 𝑝 − 1);

(b) log𝑏(𝑥𝑦) ≡ log𝑏(𝑥) + log𝑏(𝑦) (mod 𝑝 − 1);

(c) if 𝑘 ∈ Z, then log𝑏(𝑥𝑘) ≡ 𝑘 log𝑏(𝑥) (mod 𝑝 − 1).

Proof. Exercise [Q3.1] □

Theorem 3.4. Let 𝑝 be a prime and 𝑏 a primitive root modulo 𝑝. Suppose 𝑦 ≡ 𝑏𝑥

(mod 𝑝). Then, for any 𝑚 > 0 such that 𝑚2 > 𝑝 − 1, there exists 𝑖 , 𝑗 with 0 ≤ 𝑖 , 𝑗 ≤ 𝑚 − 1

such that

𝑦𝑏−𝑖 ≡ 𝑏𝑚𝑗 (mod 𝑝).

Proof. Exercise [Q3.2] □

§ 3.2 Baby-Step Giant-Step 16

Recall, our goal is to find 𝑥 such that 𝑏𝑥 ≡ 𝑦 (mod 𝑝), given 𝑝, 𝑏, 𝑦. The idea of the

baby-step giant-step algorithm is as follows. By Theorem 3.4, there exists 𝑚 > 0 such that

𝑚2 > 𝑝 − 1. Moreover, there exists 𝑖 , 𝑗 such that 0 ≤ 𝑖 , 𝑗 ≤ 𝑚 − 1 and 𝑦𝑏−𝑖 ≡ 𝑏𝑚𝑗 (mod 𝑝).
Compute two lists:

• Baby steps: 𝑦𝑏−𝑖 ≡ 𝑦(𝑏−1)𝑖 (mod 𝑝) for 0 ≤ 𝑖 ≤ 𝑚 − 1.

• Giant steps: 𝑏𝑚𝑗 ≡ (𝑏𝑚)𝑗 (mod 𝑝) for 0 ≤ 𝑗 ≤ 𝑚 − 1.

There are 𝑚 steps in each list. If we find a common element, i.e. the lists “meet in the

middle”, then 𝑦𝑏−𝑖 ≡ 𝑏𝑚𝑗 (mod 𝑝) or 𝑦 ≡ 𝑏𝑚𝑗+1 (mod 𝑝). So, 𝑥 ≡ 𝑚𝑗 + 𝑖 (mod 𝑝 − 1).

3.2 Baby-Step Giant-Step

We now present the rigorous steps of the baby-step giant-step algorithm. Due to its setup

of finding a common element, baby-step giant-step is an example of a meet-in-the-middle
(MITM) algorithm. We will see later how the complexity of the algorithm comapres to a

naive approach.

Baby-step Giant-step Algorithm [Sha71].

1. Choose 𝑚 > 0 such that 𝑚2 > 𝑝 − 1.

2. Compute 𝑏−1
and the baby steps (𝑚 of them)

𝑦, 𝑦𝑏−1, 𝑦𝑏−2, . . . , 𝑦𝑏−(𝑚−1) (mod 𝑝)

by multiplying by 𝑏−1
at each subsequent step.

3. Compute 𝑏𝑚 and the giant steps (𝑚 of them)

1, 𝑏𝑚 , 𝑏2𝑚 , . . . , 𝑏(𝑚−1)𝑚 (mod 𝑝)

by multiplying by 𝑏𝑚 at each subsequent step.

4. Find a common element, as guaranteed by Theorem 3.4.

5. Since 𝑦𝑏−𝑖 ≡ 𝑏𝑚𝑗 (mod 𝑝) for some 0 ≤ 𝑖 , 𝑗 ≤ 𝑚 − 1, we have 𝑦 ≡ 𝑏𝑚𝑗+𝑖 (mod 𝑝),
and so by Definition 3.1, 𝑥 ≡ 𝑚𝑗 + 𝑖 (mod 𝑝 − 1).

§ 3.2 Baby-Step Giant-Step 17

Example 3.5. Let 𝑝 = 29 and 𝑦 = 19. We note that 𝑏 = 3 is a primitive root modulo 29.

Our goal is to find 𝑥 such that 3
𝑥 ≡ 19 (mod 29).

1. We need an 𝑚 > 0 such that 𝑚2 > 𝑝 − 1 = 28. Choose 𝑚 = 6.

2. Compute 𝑏−1
, i.e. we want to find a 𝑧 such that 3𝑧 ≡ 1 (mod 29). We note that

𝑧 = 10 works since 3(10) = 30 ≡ 1 (mod 29). (If a solution is not immediate by

inspection, use the Euclidean algorithm.) Thus, 3
−1 ≡ 10 (mod 29). Now, we

compute the baby steps 𝑦𝑏−𝑖 for 𝑦 = 19:

𝑦 ≡ 19 (mod 29)
𝑦𝑏−1 ≡ 19(10) ≡ 190 ≡ 16 (mod 29)
𝑦𝑏−2 ≡ 16(10) ≡ 160 ≡ 15 (mod 29)
𝑦𝑏−3 ≡ 15(10) ≡ 150 ≡ 5 (mod 29)
𝑦𝑏−4 ≡ 5(10) ≡ 50 ≡ 21 (mod 29)
𝑦𝑏−5 ≡ 21(10) ≡ 210 ≡ 7 (mod 29)

3. Compute giant steps for 𝑏 = 3:

𝑏0 ≡ 1 (mod 29)
𝑏𝑚 ≡ 3

6 ≡ 27
2 ≡ (−2)2 ≡ 4 (mod 29)

𝑏2𝑚 ≡ 4
2 ≡ 16 (mod 29)

We can stop here because we have found 16 in both lists!

4. Thus,

16 ≡ 𝑦𝑏−1 ≡ 𝑏2𝑚 ≡ 16 (mod 29).

5. Therefore,

𝑦 ≡ 𝑏2𝑚+1 ≡ 𝑏13 (mod 29),

so 𝑥 = 13. We can verify by solving

3
13 ≡ 3

12(3) ≡ (27)4(3) ≡ (−2)4(3) ≡ (16)(3) ≡ 48 ≡ 19 (mod 29).

§ 3.2 Baby-Step Giant-Step 18

Remark 3.6. In order to solve 𝑏𝑥 ≡ 𝑦 (mod 𝑝) naively, we would need to check roughly

𝑝 exponents. For the baby-step giant-step algorithm, though, we only need 2𝑚 modular

arithmetic calculations. Since𝑚2 ≈ 𝑝−1, we have that𝑚 ≈ √
𝑝. So, we only need around

2

√
𝑝 calculations, which is a significant improvement.

Exercises 19

4 Exercises

Chapter 1

[Q1.1] The solution to Question 1.4 is 𝑚 = (3, 20, 2, 10) = duck. Working with vectors

and matrices defined over the integers, there are actually infinitely many possible

matrices 𝑘 that can be used for encryption. However, in practice, we often work

over a finite field of prime order.

[Eis98, Section 3.1] describes a method for encrypting 𝑚 as a matrix defined over

Z/29Z, by extending the alphabet with three additional characters. Using the

algorithm discussed in [Eis98, Section 3.3], one can calculate the original key used

for encryption knowing both 𝑚 and 𝑐. Determine the unique matrix 𝑘, defined

over Z/29Z, used to encode the original message. Then, using that key, decode

the following second piece of ciphertext 𝑐 = (27, 28, 17, 20).

Transposition ciphers are a type of cryptosystem that have been used throughout history.

This method of encryption scrambles the positions of characters without actually changing

the characters themselves.

[Q1.2] An example of a transposition cipher is the route cipher, which was used by the

Union army during the Civil war. In a route cipher, plaintext is arranged in a grid

of given dimension. Then, the key is a phrase that describes the motion used to

navigate the grid to rearrange the letters. For example, consider the message WE

NEED HELP RIGHT NOW. We start by arranging in a 3 × 6 grid:

W E H P G N

E E E R H O

N D L I T W

Then, consider the key phrase, “Snake from the bottom right, start by moving

left.” Such a key would result in the ciphertext WTI LDN EEE RHO NGP HEW, with

spacing for readability.

(a) Using the same key as above, encode the following message. Be sure to use

an appropriately-sized grid:

𝑚 = ENCRYPTION ROCKS

Exercises 20

(b) A route cipher was used to encode the following ciphertext, see if you can

decipher it! Again, spacing is used for readability.

𝑐 = CED PYR OIT URN SEL

(Hint 1: The subject is relevant to your task at hand.)

(Hint 2: Use a 3 × 5 grid.)

(Hint 3: The key phrase is, “Only up, starting from the bottom left.”)

[Q1.3] [Chr15] describes columnar transposition, another type of transposition cipher

used throughout the 19th and 20th centuries.

(a) Encode the message SWIM AT WESLEYAN using columnar transposition with

the keyword “fried.”

(b) A message was encrypted using columnar transposition. Determine the

original message by using the frequency analysis techniques discussed in

[Chr15, pp. 3-7] and the resulting ciphertext below:

𝑐 = WILWE LEILF XATEA NOM

If required, the digraphic frequencies table from [Sin09, Appendix A] can be

found here. Alternatively, a spreadsheet version is available here, to aid in

computations.

Blackout ciphers are yet another popular type of cryptosystem. They are frequently

depicted in film, as they translate well onto the screen. A blackout cipher works by

starting with some source text, and then using a key to highlight certain words or letters

from that source text (and thus blacking out the rest). The Bible is often used as the source

text because of its ubiquity, as well as its standard chapter and verse markings. These

types of cryptosystems are also called book ciphers, since a book is often used as the

source text.

Consider the following source text, using the key, “Odd prime words only.”

I suppose we would need medication to deal with the flea problem.

Blacking out all words that are not odd primes, we find:

I suppose we would need medication to deal with the flea problem.

https://mathcs-graduate.wescreates.wesleyan.edu/wp-content/uploads/2025/02/Digraphic-Fequencies-Table.pdf
https://docs.google.com/spreadsheets/d/1SQgHNcV2LD6-svFjTVBrjffdkdjPkBXF6m_jCCyzLfE/edit?usp=sharing

Exercises 21

Therefore, the message being communicated is, “We need to flee!” Note the use of the

homophone “flea” to further obscure the true meaning.

[Q1.4] Decode the secret message being passed using the key phrase, “Fibonacci numbers

from eight,” and the source text:

The monthly department meeting will be on Thursday at 11am. First

up, we have to approve John’s request for medical leave. Then, we

can discuss upcoming curriculum changes. Lunch will be provided

from noon until 2pm.

[Q1.5] The key for a blackout cipher has been encrypted using one of the cryptosystems

discussed in Chapter 1 or the Chapter 1 Exercises. Below is the ciphertext that

resulted from that encryption:

𝑐 = UJWKJHY XVZFWJX

(a) Determine the cryptosystem used and decode the key for the blackout cipher.

(b) Decode the message using the key from part (a) and the following source text:

I made a request to FedEx for their delivery trucks to enter the

loading dock immediately, so that we can unload more quickly.

[Q1.6] Encode a message for the instructor and teaching assistants using one of the

methods from Chapter 1 or the Chapter 1 Exercises. Present the ciphertext, key or

key phrase, and cryptosystem used; time permitting, they will decode the message.

Chapter 2

The RSA cryptosystem has the following attributes:

Key Setup: The recipient of the message, Bob, creates the keys as follows:

1. Choose two primes 𝑝 and 𝑞.

2. Compute 𝑛 = 𝑝𝑞, and Euler’s totient function 𝜑(𝑛) = (𝑝 − 1)(𝑞 − 1).

3. Choose an 𝑒 such that gcd(𝑒 , 𝜑(𝑛)) = 1.

4. Compute 𝑑 such that 𝑒𝑑 ≡ 1 (mod 𝜑(𝑛)).

5. Then, the keys are as follows:

Exercises 22

• Encryption/Public Key: The pair (𝑛, 𝑒).
• Decryption/Private Key: The triple (𝑑, 𝑝, 𝑞). Do NOT reveal 𝑑, 𝑝, 𝑞 or 𝜑(𝑛)!

Encryption:

1. Alice wants to send Bob a message.

2. She retrieves Bob’s public key, the pair (𝑛, 𝑒).

3. She encodes her messages as 𝑀 with 0 ≤ 𝑀 < 𝑛.

4. Alice computes the least positive residue of 𝑀𝑒 (mod 𝑛), and calls it 𝐶.

5. She sends 𝐶 to Bob.

Decryption:

1. Bob receives 𝐶.

2. Bob computes the least positive residue of 𝐶𝑑 (mod 𝑛), and calls it 𝐷.

3. Bob claims 𝑀 = 𝐷.

Theorem 4.1. Let 𝑛 = 𝑝𝑞, where 𝑝 ≠ 𝑞 primes. Suppose 𝑒 , 𝑑 ∈ Z such that 𝑒𝑑 ≡ 1

(mod 𝜑(𝑛)). If 𝐶 ≡ 𝑀𝑒 (mod 𝑛), then 𝑀 ≡ 𝐶𝑑 (mod 𝑛).

Proof. Exercise [Q2.2] □

Security of RSA: Eve knows 𝑛, 𝑒 , and 𝐶. She wants to find 𝑑 so that she can compute

𝑀 ≡ 𝐶𝑑 (mod 𝑛). How could she do it?

Option 1: Eve could factor 𝑛 into its product of primes, i.e. find 𝑝 and 𝑞. Having 𝑝

and 𝑞, she could easily compute 𝜑(𝑝𝑞) = 𝜑(𝑛). She knows 𝑒 already, and could use

Euclid’s algorithm to compute 𝑑.

Thankfully, factoring is hard! Naively, we have to check every 𝑥 with 2 ≤ 𝑥 <
√
𝑛.

If 𝑛 has 600 decimal digits, then there are roughly 10
300 =

√
10

600
numbers to try.

That is, we would have to divide 𝑛 by 10
300

numbers. That is a lot of calculations.

To put this in perspective, the fastest supercomputers on Earth compute roughly

10
18

instructions per second. If you harnessed the power of 100 supercomputers,

you could do 100 × 10
18

instructions per second. At this rate, this calculation would

take:

10
300

instructions

10
20

instructions/second

≈ 10
280

seconds ≈ 10
272

years.

The universe is only 10
10

years old, so these calculations would take a very long time.

Exercises 23

Option 2: Eve could find 𝜑(𝑛) without knowing 𝑝 or 𝑞 directly. If Eve had 𝜑(𝑛),
then knowing 𝑒, she could again use Euclid’s algorithm to compute 𝑑. However, it

turns out that computing 𝜑(𝑛) is no easier than factoring 𝑛!

Option 3: Eve could guess! Since she has 𝑒 , 𝑛, and 𝐶, and 𝑀𝑒 ≡ 𝐶 (mod 𝑛), Eve

could just try to guess 𝑀. Over the real numbers, this problem is straightforward.

For example, consider 𝑥2 = 105. We note

10
2 = 100 < 105 < 121 = 11

2.

Therefore, 10 < 𝑥 < 11. However, in the world of modular arithmetic, the same data

does not yield nearly as useful results:

10
2 ≡ 100 (mod 115) and 11

2 ≡ 6 (mod 115).

[Q2.1] The following exercise will walk through an example of both encrypting and

decrypting via RSA.

(a) Bob’s public key is (1007, 89). Playing the role of Alice, encode the message

𝑀 = 538.

(b) Bob’s private key is (19, 53, 305). Playing the role of Bob, decode the ciphertext

𝐶 = 243.

[Q2.2] Prove Theorem 4.1.

[Q2.3] Compute ord10(2).

[Q2.4] Let 𝑝 be an odd prime. Let 𝑟 be the multiplicative order of 𝑥 modulo 𝑝 for 𝑥 in the

multiplicative group of the finite field F𝑝 , i.e. 𝑥 ∈ F×𝑝 . Prove that 𝑟 exists and that

it divides 𝑝 − 1.

[Q2.5] Find all primes 𝑝 with 𝑝 < 18 such that 2 is a primitive root modulo 𝑝. (Hint:

Computers are very good at computing powers of 2 due to their architecture.)

[Q2.6] Prove Corollary 2.13. (Hint: Use Theorems 2.11 and 2.12.)

[Q2.7] Alice has the public key 𝑝 = 941 and 𝑏 = 627.

(a) Bob wants to correspond with Alice. So, Bob chooses 𝑦 = 781. Playing the

role of Bob, calculate the number 𝐵 that you send to Alice.

Exercises 24

(b) Alice, having received Bob’s correspondence request, sends Bob the number

𝐴 = 390 in response. As Bob, determine your shared symmetric key with

Alice.

(c) Verify the key in part (b) by now playing the role of Alice. To start, Alice

chose 𝑥 = 347 after receiving Bob’s initial number 𝐵 from part (a).

[Q2.8] Consider the public key 𝑝 = 29 and 𝑏 = 8. Your goal is to communicate with

a second group of undergraduate students using the symmetric cryptosystem

described in [Eis98, Section 3].

The two groups will need to pass four keys 𝑘1, . . . , 𝑘4 to one another using the

Diffie-Hellman key exchange in order to build a 2 × 2 key matrix

𝐾 =

(
𝑘1 𝑘2

𝑘3 𝑘4

)
.

Once you have agreed on 𝐾, begin encrypting messages and sending them to the

other group. Be careful, some evil graduate students are eager to intercept and

decode your messages!

Chapter 3

[Q3.1] Prove Theorem 3.3.

[Q3.2] Prove Theorem 3.4. (Hint: Use the division algorithm.)

[Q3.3] Solve 6
𝑥 ≡ 10 (mod 13) using the baby-step giant-step algorithm. (Note: This

exercise is small enough to compute by hand.)

[Q3.4] Using any programming language of your choosing, write a script that performs

the baby-step giant-step algorithm. Then, solve 521
𝑥 ≡ 1234 (mod 300023).

[Q3.5] The computer algebra system SageMath has a built-in function for solving discrete

logs. Call the function by running the following code in order to solve for 𝑥 in the

discrete log 𝑏𝑥 ≡ 𝑦 (mod 𝑝):

discrete_log(Mod(y, p), Mod(b, p), p-1)

You can run SageMath in your browser here. Solve the discrete log problem from

the previous exercise using the SageMath function. Using the time command,

https://sagecell.sagemath.org/

Exercises 25

compare the speed of the built-in implementation to the speed of your baby-step

giant-step algorithm. Are there any ways you can increase the efficiency of your

algorithm?

References 26

References
[Chr15] C. Christensen, Columnar transposition, 2015. (Link)

[DH76] W. Diffie and M. Hellman, New directions in cryptography, IEEE Transactions on Information Theory

22 (1976), no. 6, 644–654. (Link)

[Eis98] M. Eisenberg, Hill ciphers and modular linear algebra, 1998. (Link)

[Hil29] L. S. Hill, Cryptography in an algebraic alphabet, The American Mathematical Monthly 36 (1929),

no. 6, 306–312. (Link)

[HPS14] J. Hoffstein, J. Pipher, and J. H. Silverman, An introduction to mathematical cryptography, 2nd ed.,

Undergraduate Texts in Mathematics, Springer, 2014. (MR3289167)

[Ker83] A. Kerckhoffs, La cryptographie militaire, Journal des Sciences Militaires (1883), 161–191. (Link)

[Mer78] R. C. Merkle, Secure communications over insecure channels, Commun. ACM 21 (April 1978), no. 4,

294–299. (Link)

[PH78] S. Pohlig and M. Hellman, An improved algorithm for computing logarithms overgf(p)and its crypto-
graphic significance (corresp.), IEEE Transactions on Information Theory 24 (1978), no. 1, 106–110.

(Link)

[Pol74] J. M. Pollard, Theorems on factorization and primality testing, Proc. Cambridge Philos. Soc. 76 (1974),

521–528. (MR354514)

[Raj13] W. Raji, An introductory course in elementary number theory, 2013. (Link)

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman, A method for obtaining digital signatures and public-key
cryptosystems, Commun. ACM 21 (February 1978), no. 2, 120–126. (Link)

[Sha71] D. Shanks, Class number, a theory of factorization, and genera, Number Theory Institute (Proc. Sympos.

Pure Math.), 1971, pp. 415–440. (MR316385)

[Sin09] A. Sinkov, Elementary cryptanalysis: A mathematical approach, Anneli Lax New Mathematical Library,

vol. 22, Mathematical Association of America, 2009. (MR2530836)

[Was08] L. C. Washington, Elliptic curves: Number theory and cryptography, 2nd ed., Discrete Mathematics

and its Applications, Chapman & Hall/CRC, 2008. (MR2404461)

https://www.nku.edu/~christensen/1402%20Columnar%20transposition.pdf
https://ee.stanford.edu/~hellman/publications/24.pdf
https://apprendre-en-ligne.net/crypto/hill/Hillciph.pdf
https://doi.org/10.1080/00029890.1929.11986963
https://mathscinet.ams.org/mathscinet-getitem?mr=MR3289167
https://www.petitcolas.net/kerckhoffs/crypto_militaire_2.pdf
https://doi.org/10.1145/359460.359473
https://ieeexplore.ieee.org/document/1055817
https://mathscinet.ams.org/mathscinet-getitem?mr=MR354514
https://resources.saylor.org/wwwresources/archived/site/wp-content/uploads/2013/05/An-Introductory-in-Elementary-Number-Theory.pdf
https://dl.acm.org/doi/10.1145/359340.359342
https://mathscinet.ams.org/mathscinet-getitem?mr=MR316385
https://mathscinet.ams.org/mathscinet-getitem?mr=MR2530836
https://mathscinet.ams.org/mathscinet-getitem?mr=MR2404461

	Big Picture of Cryptology
	Introduction
	Historical Ciphers
	Symmetric Key vs. Public Key Cryptosystems

	Public Key Cryptosystems
	Divisibility and Modular Arithmetic
	Multiplicative Order
	Primitive Roots
	Discrete Log Problem
	Diffie-Hellman Key Exchange

	Cryptoanalysis
	Logarithms and Modular Arithmetic
	Baby-Step Giant-Step

	Exercises

